GEM TPC – design and performance

Instrumentation Division Seminar

Khamit Ardashev Univ. of Virginia

May 27, 2009

Overview

- LEGS experiment.
- Why was the TPC necessary ?
- What were requirements and design solutions for the TPC?
- Calibration procedures and coordinate determination.
- Track construction and systematic errors.
- Spatial and timing resolution.
- Particle identification, spatial and momentum reconstruction.
- Pion photo-production preliminary asymmetries.

The LEGS TPC Team

BNL LEGS:

Andy Sandorfi

Craig Thorn

Jack Mahon

Sam Hoblit

UVa:

Blaine Norum

Khamit Ardashev

Serdar Kizilgul

Kebin Wang

VPI&SU

Marvin Blecher

BNL Instr. Div.

Veljko Radeka

Bo Yu

Gianluigi De Geronimo

Anand Kandasamy

Jack Fried

Joe Mead

Graham Smith

Don Makowiecki

Tom Tsang

Kim Ackley

Kevin Wolniewicz

John Triolo

Ron Angona

Howard Hansen

Don Pinelli

The LEGS Facility

Beam

Highly Polarized (>90%) Compton Backscattered Photons Linear and Circular Polarization, $E_{\pi} < E_{\gamma} < 470$ MeV: Covers Δ region

Target

Highly Polarized Frozen Spin HD Target Longitudinal Polarization with $P_{\rm H} \sim 60\%, \, P_{\rm D} \sim 30\%$

Detector

TPC

Array of 432 Nal(TI) blocks Wall of 64 Plastic Scintillator Bars Wall of 186 Pb-glass blocks Double-polarization observables on the nucleon in the $\Delta(1232)$ P₃₃ region

$$\vec{\gamma p} \rightarrow \pi^+ n \quad \vec{\gamma n} \rightarrow \pi^- p$$

$$\vec{\gamma}p \to \pi^{0}p \qquad \vec{\gamma}n \to \pi^{0}n$$

We can see all 4 pion channels simultaneously.

Polarization Observables

 P_{γ}^{C} γ beam circular polarization, +1 is right circular for spin along +z (downstream)

 P_{γ}^{L} $\;\gamma$ beam linear polarization, +1 or horizontal for electric field along x

 P_X^V Target vector polarization, +1 for spin along +z (downstream)

 P_X^T Target tensor polarization, for X=D only (zero for H)

Spin Sum Rules at LEGS

Gerasimov-Drell-Hearn

Forward Spin-Polarizability

• LEGS Energy Range

$$E_\pi < E_\gamma < 470 MeV$$

Our Focus Neutron Sum Rules

Physics at LEGS is Dominated by the Δ Resonance

Proton Spin Difference Cross Sections

Cross Section of SASY (Spin ASYmmetry Detector)

with TPC and Superconducting Solenoid

LEGS 4π Detector

LEGS TPC Design Requirements

An essential element of SASY providing

 π^{\pm} charge separation increased angular coverage improved resolution

Design is eased by

low event multiplicities (≤3) low event rates (≤1 kHz)

Design is complicated by

small size to fit in XTAL Box (pad density is 17x that of Star TPC) low mass to allow γ detection (0.4 RL)

TPC - Key Features and Parameters

- Dimensions: ϕ 8.7cm ID x ϕ 35.7cm OD x 50cm active length
- Angular coverage of reactions from target: $20^{\circ} < \theta < 155^{\circ}$
- Maximum magnetic field: 1.95 T
- Single sample per channel per trigger designed for low rate (~1 kHz), low multiplicity (~3) environment
- Double GEM amplification, gas gain ~1600
- Drift field ~ 245V/cm (12.5kV high voltage), total drift time ~ 6 μ s (80 μ m/ns) with filling gas of Ar + 20% CH₄
- Interpolating zigzag anode pad plane, ~200 µm x-y resolution for stiff tracks; Pad density >10 times higher than in previous large TPCs
- Readout channel count: 7296 channels of charge and time
- Customized ASICs, 32 channels per chip, 40mW per chip, 10+6 W total
- Electronic noise <250e, 500ns peaking time, timing resolution ~ 5-15 ns
- 8 set dual ADCs digitize the pedestal suppressed and serialized data streams: worst case event processing time <500 μ s

Assembled TPC

viewed from readout end

Construction of the TPC

GEM Foils Mounted on Frames

Layout of the Anode Pad Plane

Application Specific Integrated Circuit (ASIC) for LEGS TPC

G. De Geronimo, J. Fried, B. Yu (Instrumentation Division/BNL) – C. Thorn (LEGS/BNL)

Digital Data Acquisition System

PCI CARD

- PCI Version 2.1 compliant
- Altera Programmable Logic
- •3.3 or 5 volt compatible
- External clock speed up to 80 MHz
- •Two independent DMA channels
- PCI data transfers up to 100MB/sec
- •Two 1MB memory banks
- •36 bit bi-directional LVDS lines nibble selectable

LEGS TPC DIGITAL INTERFACE READOUT BOARD

Altera Programmable Logic

2Mbit dedicated FIFO memory
Integrated system diagnostic

36 bit bi-directional LVDS lines nibble selectable

TPC Installed in XTAL Box at LEGS Beamline at NSLS

View from upstream end with HD Ice cryostat removed

Typical Track Images

projected in planes transverse and parallel to TPC axis

Particle Identification in LEGS TPC

$$\gamma p \rightarrow \pi^{+} n \qquad \qquad \gamma n \rightarrow \pi^{-} p$$
 $\gamma p \rightarrow \pi^{0} p \qquad \qquad \gamma n \rightarrow \pi^{0} n$

High energy cosmic tracks in TPC

Radial component of E creates tangential force on drifting electrons F=e(E+vxB)

Tangential Component of Drift Velocity

for constant radial component of E in Ar + 20% CH₄ computed by MagBoltz E =245 V/cm @ 1° to B

Cosmic Ray Tracks

"Half-Track" mismatch distance vs. drift distance for $E_r = 5 \text{ V/cm}$

Charge pedestals depend on Time after Trigger

Coupling of timing (TDO) output into charge input?

Chip-to-chip variation of charge pedestals for 14 ASICs

Pad-by-pad Gains Determined with X-Rays

Measured with DVGEM = 400V
Non-uniformity of GEM and charge amplifier is noticable
One GEM sector (out of 10) has lower gain
Sector boundary effects are visible

Pad-by-pad Gains Determined with Protons

Measured with DVGEM = 388V

Calculated from dE/dx of protons with narrow cut on momentum Non-uniformity of GEM and charge amplifier is noticeable One GEM sector (out of 10) now has very low gain Sector boundary effects are visible

Transverse Spatial Resolution

for incidence angle on pad row

Effect of Diffusion on Transverse Spatial Resolution

Position Resolution for High Energy Cosmic Ray Tracks
1.95 T, Ar +20% CH₄

Line is $\sigma_x^2 = \sigma_0^2 + D^2 z$ with $\sigma_0 = 80 \,\mu$ m and D = $48 \,\mu$ m/cm

Pad Plane Resolution for reaction events p, π^+ , and π^-

originating at the target

Chip-to-chip and within-chip variation of timing resolution

Z-Position Calibration and Resolution Measurement

Z Position and Resolution Depends on Charge

ASICs: Measured Timing Resolution and Walk

Time Walk

Reconstruction of HD Ice Target

by projection of proton tracks onto TPC axis

Reconstructed Energy Resolution and Efficiency

for Protons and Pions

Two-body kinematics

$$\gamma$$
 + n \rightarrow p + π

Redundancy of measured momenta over-determines kinematics

Missing Mass Resolution

Pion Efficiency

Beam Asymmetry for Pions

The TPC Works Well. Physics Results are Near!

The End

Additional Slides

Argon+20% Methane, 1.8T B//E

Interpolating Zigzag Pad Readout with Double GEM for Charge Amplification

resolution is 140 µm rms for zero drift

Missing energy distributions for $\overrightarrow{\gamma} + \overrightarrow{H} \overrightarrow{D} \rightarrow \pi^0 + X$

Difference between 2-body kinematics and the measured π^0 energy

Most of target is HD About 22% of π^0 come from Al cooling wires and Kel-F cell

Double GEM Gas Gain

0.2kV/cm drift field, 1kV/cm transfer field, 2kV/cm induction field

Track Projection in a TPC

Die Photo of ASIC for LEGS Time Projection Chamber

Photo by Anand Kandasamy

Pad Plane with Front-End Electronics – Specifications

Tracking Measurement

- Energy triggered pad
- Energy neighbor pads (centroid)
- Timing of triggered pad (z)

Specifications

- ENC < 500 e- rms
- Timing < 20ns rms
- Preamplifier/shaper/BLH
- Adjustable gain ≈ 17-32 mV/fC
- Peak-detector
- Neighbor channel/chip enable
- Timing-detector (TAC)
- Channel masking
- Calibration
- On-chip buffers
- Token/flag readout

Drift Volume with HV Electrode and Gradient Rings

LEGS TPC Design Parameters

Inner active diameter

Outer active diameter

Active length

Overall length

Operating electric field (voltage)

Maximum magnetic field

Track distortion ($\Delta \phi$) from B_r

Drift time

Filling gas

Gas multiplication

Peadout channels

 Δx , Δy resolution

 Δz resolution

Angular coverage

Dead time per event

Average event size

8.7 cm

35.7 cm

50 cm

90 cm

200 V/cm (10 kV)

1.95 T

<1 mm

 $<7 \mu s$

Ar + 20% CH₄

~1600 by double GEM

7296

 $<600 \, \mu \mathrm{m}$

<1800 μ m

20° < *θ* < 155°

~400 μ s

200 words

